Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Front Oncol ; 14: 1330419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450186

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a heterogeneous cancer, with minimal response to therapeutic intervention and with 85% of cases diagnosed at an advanced stage due to lack of early symptoms, highlighting the importance of understanding PDAC immunology in greater detail. Here, we applied an immunoproteomic approach to investigate autoantibody responses against cancer-testis and tumor-associated antigens in PDAC using a high-throughput multiplexed protein microarray platform, comparing humoral immune responses in serum and at the site of disease in order to shed new light on immune responses in the tumor microenvironment. We simultaneously quantified serum or tissue IgG and IgA antibody isotypes and subclasses in a cohort of PDAC, disease control and healthy patients, observing inter alia that subclass utilization in tumor tissue samples was predominantly immune suppressive IgG4 and inflammatory IgA2, contrasting with predominant IgG3 and IgA1 subclass utilization in matched sera and implying local autoantibody production at the site of disease in an immune-tolerant environment. By comparison, serum autoantibody subclass profiling for the disease controls identified IgG4, IgG1, and IgA1 as the abundant subclasses. Combinatorial analysis of serum autoantibody responses identified panels of candidate biomarkers. The top IgG panel included ACVR2B, GAGE1, LEMD1, MAGEB1 and PAGE1 (sensitivity, specificity and AUC values of 0.933, 0.767 and 0.906). Conversely, the top IgA panel included AURKA, GAGE1, MAGEA10, PLEKHA5 and XAGE3aV1 (sensitivity, specificity, and AUC values of 1.000, 0.800, and 0.954). Assessment of antigen-specific serum autoantibody glycoforms revealed abundant sialylation on IgA in PDAC, consistent with an immune suppressive IgA response to disease.

2.
Microbiol Spectr ; 12(2): e0319023, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38230936

RESUMO

Infants who are exposed to HIV but uninfected (iHEU) have higher risk of infectious morbidity than infants who are HIV-unexposed and uninfected (iHUU), possibly due to altered immunity. As infant gut microbiota may influence immune development, we evaluated the effects of HIV exposure on infant gut microbiota and its association with tetanus toxoid vaccine responses. We evaluated the gut microbiota of 82 South African (61 iHEU and 21 iHUU) and 196 Nigerian (141 iHEU and 55 iHUU) infants at <1 and 15 weeks of life by 16S rRNA gene sequencing. Anti-tetanus antibodies were measured by enzyme-linked immunosorbent assay at matched time points. Gut microbiota in the 278 included infants and its succession were more strongly influenced by geographical location and age than by HIV exposure. Microbiota of Nigerian infants, who were exclusively breastfed, drastically changed over 15 weeks, becoming dominated by Bifidobacterium longum subspecies infantis. This change was not observed among South African infants, even when limiting the analysis to exclusively breastfed infants. The Least Absolute Shrinkage and Selection Operator regression suggested that HIV exposure and gut microbiota were independently associated with tetanus titers at week 15, and that high passively transferred antibody levels, as seen in the Nigerian cohort, may mitigate these effects. In conclusion, in two African cohorts, HIV exposure minimally altered the infant gut microbiota compared to age and setting, but both specific gut microbes and HIV exposure independently predicted humoral tetanus vaccine responses.IMPORTANCEGut microbiota plays an essential role in immune system development. Since infants HIV-exposed and uninfected (iHEU) are more vulnerable to infectious diseases than unexposed infants, we explored the impact of HIV exposure on gut microbiota and its association with vaccine responses. This study was conducted in two African countries with rapidly increasing numbers of iHEU. Infant HIV exposure did not substantially affect gut microbial succession, but geographic location had a strong effect. However, both the relative abundance of specific gut microbes and HIV exposure were independently associated with tetanus titers, which were also influenced by baseline tetanus titers (maternal transfer). Our findings provide insight into the effect of HIV exposure, passive maternal antibody, and gut microbiota on infant humoral vaccine responses.


Assuntos
Microbioma Gastrointestinal , Infecções por HIV , Tétano , Lactente , Humanos , Toxoide Tetânico , África do Sul , RNA Ribossômico 16S
3.
Sci Adv ; 9(49): eade1370, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064556

RESUMO

Bacille Calmette-Guerin (BCG) vaccine can elicit good TH1 responses in neonates. We hypothesized that the pioneer gut microbiota affects vaccine T cell responses. Infants who are HIV exposed but uninfected (iHEU) display an altered immunity to vaccination. BCG-specific immune responses were analyzed at 7 weeks of age in iHEU, and responses were categorized as high or low. Bifidobacterium longum subsp. infantis was enriched in the stools of high responders, while Bacteroides thetaiotaomicron was enriched in low responders at time of BCG vaccination. Neonatal germ-free or SPF mice orally gavaged with live B. infantis exhibited significantly higher BCG-specific T cells compared with pups gavaged with B. thetaiotaomicron. B. infantis and B. thetaiotaomicron differentially affected stool metabolome and colonic transcriptome. Human colonic epithelial cells stimulated with B. infantis induced a unique gene expression profile versus B. thetaiotaomicron. We thus identified a causal role of B. infantis in early-life antigen-specific immunity.


Assuntos
Bifidobacterium longum subspecies infantis , Microbioma Gastrointestinal , Humanos , Lactente , Camundongos , Animais , Vacina BCG , Linfócitos T , Fezes/microbiologia
4.
Front Neurol ; 14: 1256745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107644

RESUMO

Background: Dementia is a debilitating neurological disease affecting millions of people worldwide. The exact mechanisms underlying the initiation and progression of the disease remain to be fully defined. There is an increasing body of evidence for the role of immune dysregulation in the pathogenesis of dementia, where blood-borne autoimmune antibodies have been studied as potential markers associated with pathological mechanisms of dementia. Methods: This study included plasma from 50 cognitively normal individuals, 55 subjects with MCI (mild cognitive impairment), and 22 subjects with dementia. Autoantibody profiling for more than 1,600 antigens was performed using a high throughput microarray platform to identify differentially expressed autoantibodies in MCI and dementia. Results: The differential expression analysis identified 33 significantly altered autoantibodies in the plasma of patients with dementia compared to cognitively normal subjects, and 38 significantly altered autoantibodies in the plasma of patients with dementia compared to subjects with MCI. And 20 proteins had significantly altered autoantibody responses in MCI compared to cognitively normal individuals. Five autoantibodies were commonly dysregulated in both dementia and MCI, including anti-CAMK2A, CKS1B, ETS2, MAP4, and NUDT2. Plasma levels of anti-ODF3, E6, S100P, and ARHGDIG correlated negatively with the cognitive performance scores (MoCA) (r2 -0.56 to -0.42, value of p < 0.001). Additionally, several proteins targeted by autoantibodies dysregulated in dementia were significantly enriched in the neurotrophin signaling pathway, axon guidance, cholinergic synapse, long-term potentiation, apoptosis, glycolysis and gluconeogenesis. Conclusion: We have shown multiple dysregulated autoantibodies in the plasma of subjects with MCI and dementia. The corresponding proteins for these autoantibodies are involved in neurodegenerative pathways, suggesting a potential impact of autoimmunity on the etiology of dementia and the possible benefit for future therapeutic approaches. Further investigations are warranted to validate our findings.

5.
Res Sq ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461449

RESUMO

Introduction: Infants who are exposed to HIV but uninfected (iHEU) have higher risk of infectious morbidity than infants who are HIV-unexposed and uninfected (iHUU), possibly due to altered immunity. As infant gut microbiota may influence immune development, we evaluated the effects of HIV exposure on infant gut microbiota and its association with tetanus toxoid (TT) vaccine responses. Methods: We evaluated gut microbiota by 16S rRNA gene sequencing in 278 South African and Nigerian infants during the first and at 15 weeks of life and measured antibodies against TT vaccine by enzyme-linked immunosorbent assay (ELISA) at matched time points. Results: Infant gut microbiota and its succession were more strongly influenced by geographical location and age than by HIV exposure. Microbiota of Nigerian infants drastically changed over 15 weeks, becoming dominated by Bifidobacterium longum subspecies infantis. This change was not observed among EBF South African infants. Lasso regression suggested that HIV exposure and gut microbiota were independently associated with TT vaccine responses at week 15, and that high passive antibody levels may mitigate these effects. Conclusion: In two African cohorts, HIV exposure minimally altered the infant gut microbiota compared to age and country, but both specific gut microbes and HIV exposure independently predicted humoral vaccine responses.

6.
Front Physiol ; 14: 1203723, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520825

RESUMO

Background: Coronavirus disease (COVID-19) manifests many clinical symptoms, including an exacerbated immune response and cytokine storm. Autoantibodies in COVID-19 may have severe prodromal effects that are poorly understood. The interaction between these autoantibodies and self-antigens can result in systemic inflammation and organ dysfunction. However, the role of autoantibodies in COVID-19 complications has yet to be fully understood. Methods: The current investigation screened two independent cohorts of 97 COVID-19 patients [discovery (Disc) cohort from Qatar (case = 49 vs. control = 48) and replication (Rep) cohort from New York (case = 48 vs. control = 28)] utilizing high-throughput KoRectly Expressed (KREX) Immunome protein-array technology. Total IgG autoantibody responses were evaluated against 1,318 correctly folded and full-length human proteins. Samples were randomly applied on the precoated microarray slides for 2 h. Cy3-labeled secondary antibodies were used to detect IgG autoantibody response. Slides were scanned at a fixed gain setting using the Agilent fluorescence microarray scanner, generating a 16-bit TIFF file. Group comparisons were performed using a linear model and Fisher's exact test. Differentially expressed proteins were used for KEGG and WIKIpathway annotation to determine pathways in which the proteins of interest were significantly over-represented. Results and conclusion: Autoantibody responses to 57 proteins were significantly altered in the COVID-19 Disc cohort compared to healthy controls (p ≤ 0.05). The Rep cohort had altered autoantibody responses against 26 proteins compared to non-COVID-19 ICU patients who served as controls. Both cohorts showed substantial similarities (r 2 = 0.73) and exhibited higher autoantibody responses to numerous transcription factors, immunomodulatory proteins, and human disease markers. Analysis of the combined cohorts revealed elevated autoantibody responses against SPANXN4, STK25, ATF4, PRKD2, and CHMP3 proteins in COVID-19 patients. The sequences for SPANXN4 and STK25 were cross-validated using sequence alignment tools. ELISA and Western blot further verified the autoantigen-autoantibody response of SPANXN4. SPANXN4 is essential for spermiogenesis and male fertility, which may predict a potential role for this protein in COVID-19-associated male reproductive tract complications, and warrants further research.

7.
PLoS Comput Biol ; 19(6): e1011163, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37327214

RESUMO

BACKGROUND: Microbiome research is providing important new insights into the metabolic interactions of complex microbial ecosystems involved in fields as diverse as the pathogenesis of human diseases, agriculture and climate change. Poor correlations typically observed between RNA and protein expression datasets make it hard to accurately infer microbial protein synthesis from metagenomic data. Additionally, mass spectrometry-based metaproteomic analyses typically rely on focused search sequence databases based on prior knowledge for protein identification that may not represent all the proteins present in a set of samples. Metagenomic 16S rRNA sequencing only targets the bacterial component, while whole genome sequencing is at best an indirect measure of expressed proteomes. Here we describe a novel approach, MetaNovo, that combines existing open-source software tools to perform scalable de novo sequence tag matching with a novel algorithm for probabilistic optimization of the entire UniProt knowledgebase to create tailored sequence databases for target-decoy searches directly at the proteome level, enabling metaproteomic analyses without prior expectation of sample composition or metagenomic data generation and compatible with standard downstream analysis pipelines. RESULTS: We compared MetaNovo to published results from the MetaPro-IQ pipeline on 8 human mucosal-luminal interface samples, with comparable numbers of peptide and protein identifications, many shared peptide sequences and a similar bacterial taxonomic distribution compared to that found using a matched metagenome sequence database-but simultaneously identified many more non-bacterial peptides than the previous approaches. MetaNovo was also benchmarked on samples of known microbial composition against matched metagenomic and whole genomic sequence database workflows, yielding many more MS/MS identifications for the expected taxa, with improved taxonomic representation, while also highlighting previously described genome sequencing quality concerns for one of the organisms, and identifying an experimental sample contaminant without prior expectation. CONCLUSIONS: By estimating taxonomic and peptide level information directly on microbiome samples from tandem mass spectrometry data, MetaNovo enables the simultaneous identification of peptides from all domains of life in metaproteome samples, bypassing the need for curated sequence databases to search. We show that the MetaNovo approach to mass spectrometry metaproteomics is more accurate than current gold standard approaches of tailored or matched genomic sequence database searches, can identify sample contaminants without prior expectation and yields insights into previously unidentified metaproteomic signals, building on the potential for complex mass spectrometry metaproteomic data to speak for itself.


Assuntos
Microbiota , Espectrometria de Massas em Tandem , Humanos , RNA Ribossômico 16S/genética , Bases de Dados de Proteínas , Peptídeos/genética , Peptídeos/análise , Microbiota/genética , Bactérias/genética , Proteoma/genética
8.
Viruses ; 15(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36851662

RESUMO

Vaccines against SARS-CoV-2 have been pivotal in overcoming the COVID-19 pandemic yet understanding the subsequent outcomes and immunological effects remain crucial, especially for at-risk groups e.g., people living with human immunodeficiency virus (HIV) (PLWH). In this study we report the longitudinal IgA and IgG antibody titers, as well as antibody-mediated angiotensin converting enzyme 2 (ACE2) binding blockade, against the SARS-CoV-2 spike (S) proteins after 1 and 2 doses of the ChAdOx1 nCoV-19 vaccine in a population of Black PLWH. Here, we report that PLWH (N = 103) did not produce an anti-S IgA response after infection or vaccination, however, anti-S IgG was detected in response to vaccination and infection, with the highest level detected for infected vaccinated participants. The anti-IgG and ACE2 blockade assays revealed that both vaccination and infection resulted in IgG production, however, only vaccination resulted in a moderate increase in ACE2 binding blockade to the ancestral S protein. Vaccination with a previous infection results in the greatest anti-S IgG and ACE2 blockade for the ancestral S protein. In conclusion, PLWH produce an anti-S IgG response to the ChAdOx1 nCoV-19 vaccine and/or infection, and ChAdOx1 nCoV-19 vaccination with a previous infection produced more neutralizing antibodies than vaccination alone.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Anticorpos Bloqueadores , Anticorpos Neutralizantes , ChAdOx1 nCoV-19 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Imunoglobulina A , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Imunoglobulina G
9.
Viruses ; 15(2)2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36851798

RESUMO

The COVID-19 pandemic continues to affect individuals across the globe, with some individuals experiencing more severe disease than others. The relatively high frequency of re-infections and breakthrough infections observed with SARS-CoV-2 highlights the importance of extending our understanding of immunity to COVID-19. Here, we aim to shed light on the importance of antibody titres and epitope utilization in protection from re-infection. Health care workers are highly exposed to SARS-CoV-2 and are therefore also more likely to become re-infected. We utilized quantitative, multi-antigen, multi-epitope SARS-CoV-2 protein microarrays to measure IgG and IgA titres against various domains of the nucleocapsid and spike proteins. Potential re-infections in a large, diverse health care worker cohort (N = 300) during the second wave of the pandemic were identified by assessing the IgG anti-N titres before and after the second wave. We assessed epitope coverage and antibody titres between the 'single infection' and 're-infection' groups. Clear differences were observed in the breadth of the anti-N response before the second wave, with the epitope coverage for both IgG (p = 0.019) and IgA (p = 0.015) being significantly increased in those who did not become re-infected compared to those who did. Additionally, the IgG anti-N (p = 0.004) and anti-S titres (p = 0.018) were significantly higher in those not re-infected. These results highlight the importance of the breadth of elicited antibody epitope coverage following natural infection in protection from re-infection and disease in the COVID-19 pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Epitopos , Imunoglobulina G , Pandemias , Nucleocapsídeo , Reinfecção , Imunoglobulina A
10.
Sci Rep ; 12(1): 20171, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418423

RESUMO

Karyopherin beta 1 (Kpnß1) is the principal nuclear importer of cargo proteins and plays a role in many cellular processes. Its expression is upregulated in cancer and essential for cancer cell viability, thus the identification of its binding partners might help in the discovery of anti-cancer therapeutic targets and cancer biomarkers. Herein, we applied immunoprecipitation coupled to mass spectrometry (IP-MS) to identify Kpnß1 binding partners in normal and cancer cells. IP-MS identified 100 potential Kpnß1 binding partners in non-cancer hTERT-RPE1, 179 in HeLa cervical cancer, 147 in WHCO5 oesophageal cancer and 176 in KYSE30 oesophageal cancer cells, including expected and novel interaction partners. 38 binding proteins were identified in all cell lines, with the majority involved in RNA metabolism. 18 binding proteins were unique to the cancer cells, with many involved in protein translation. Western blot analysis validated the interaction of known and novel binding partners with Kpnß1 and revealed enriched interactions between Kpnß1 and select proteins in cancer cells, including proteins involved in cancer development, such as Kpnα2, Ran, CRM1, CCAR1 and FUBP1. Together, this study shows that Kpnß1 interacts with numerous proteins, and its enhanced interaction with certain proteins in cancer cells likely contributes to the cancer state.


Assuntos
Neoplasias Esofágicas , Neoplasias do Colo do Útero , Feminino , Humanos , beta Carioferinas , Espectrometria de Massas , Imunoprecipitação , Proteínas de Ciclo Celular , Proteínas Reguladoras de Apoptose , Proteínas de Ligação a DNA , Proteínas de Ligação a RNA
11.
Microbiome ; 10(1): 141, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045402

RESUMO

BACKGROUND: Women with a cervicovaginal microbiota dominated by Lactobacillus spp. are at reduced risk of acquiring sexually transmitted infections including HIV, but the biological mechanisms involved remain poorly defined. Here, we performed metaproteomics on vaginal swab samples from young South African women (n = 113) and transcriptomics analysis of cervicovaginal epithelial cell cultures to examine the ability of lactic acid, a metabolite produced by cervicovaginal lactobacilli, to modulate genital epithelial barrier function. RESULTS: Compared to women with Lactobacillus-depleted microbiota, women dominated by vaginal lactobacilli exhibit higher abundance of bacterial lactate dehydrogenase, a key enzyme responsible for lactic acid production, which is independently associated with an increased abundance of epithelial barrier proteins. Physiological concentrations of lactic acid enhance epithelial cell culture barrier integrity and increase intercellular junctional molecule expression. CONCLUSIONS: These findings reveal a novel ability of vaginal lactic acid to enhance genital epithelial barrier integrity that may help prevent invasion by sexually transmitted pathogens. Video abstract.


Assuntos
Ácido Láctico , Microbiota , Vagina , Epitélio , Feminino , Humanos , Ácido Láctico/metabolismo , Lactobacillus/metabolismo , Microbiota/fisiologia , Proteínas de Junções Íntimas/metabolismo , Vagina/metabolismo , Vagina/microbiologia
12.
Proteomics ; 22(18): e2200118, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35809024

RESUMO

The spread of coronavirus disease 2019 (COVID-19) viral pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a worldwide pandemic claiming several thousands of lives worldwide. During this pandemic, several studies reported the use of COVID-19 convalescent plasma (CCP) from recovered patients to treat severely or critically ill patients. Although this historical and empirical treatment holds immense potential as a first line of response against eventual future unforeseen viral epidemics, there are several concerns regarding the efficacy and safety of this approach. This critical review aims to pinpoint the possible role of mass spectrometry-based analysis in the identification of unique molecular component proteins, peptides, and metabolites of CCP that explains the therapeutic mechanism of action against COVID-19. Additionally, the text critically reviews the potential application of mass spectrometry approaches in the search for novel plasma biomarkers that may enable a rapid and accurate assessment of the safety and efficacy of CCP. Considering the relative low-cost value involved in the CCP therapy, this proposed line of research represents a tangible scientific challenge that will be translated into clinical practice and help save several thousand lives around the world, specifically in low- and middle-income countries.


Assuntos
COVID-19 , COVID-19/terapia , Humanos , Imunização Passiva , Espectrometria de Massas , Pandemias , SARS-CoV-2 , Soroterapia para COVID-19
13.
ACS Sens ; 7(5): 1403-1418, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35561012

RESUMO

The recent surge in infectious disease-causing pathogens, resulting in global catastrophe, has merited a pivotal quest toward point-of-care (POC) diagnostics. Mycobacterium tuberculosis (MTB) is still the top bacterium-based infectious disease-causing pathogen worldwide. In a concerted effort toward simplifying and decentralizing the discriminatory screening of MTB causing pathogens, electrochemical surface-enhanced Raman scattering (EC-SERS) was adopted to create a customized screening tool. The development strategy combined five key factors, including (i) a simplified Tollens'-based chemical synthesis method for bulk supply of silver nanoparticles, (ii) the deliberate surface modification of nanoparticles with carefully selected polyelectrolytes to resemble the conditioning layer usually found on a natural substratum, (iii) uniform SERS-active films formed through simple unprogrammed assembly, (iv) the controlled manipulation of the local electric field through applied voltage using a technique that does not conform to the limitations of classical EC-SERS, and (v) the inherent specificity of the target-specific SERS vibrational signature. The EC-SERS platform was able to discriminatively detect and identify TB-derived mycobacteria, including three clinically relevant MTB strains, TB-H37Rv, TB-HN878, and TB-CDC1551. Moreover, a customized voltage stepping protocol, compatible with either the inclusion of a short preincubation step or with in situ EC-SERS is illustrated. From the obtained SERS vibrational signatures, a band indicating a mode unique to TB-derived/TB-affiliated mycobacteria and thus not observed for other bacterial types used in this study was illustrated. Furthermore, provisional investigation, done as prelude for assessing the potential for translational adaptability of the EC-SERS technique toward POC clinical settings for sputum and urine specimens, was carried out.


Assuntos
Nanopartículas Metálicas , Mycobacterium tuberculosis , Técnicas de Tipagem Bacteriana , Humanos , Prata , Análise Espectral Raman/métodos
15.
PLoS One ; 17(2): e0262442, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35120133

RESUMO

In late December 2019, pneumonia cases of unknown origin were reported in Wuhan, China. This virus was named SARS-CoV2 and the clinical syndrome was named coronavirus disease 19 (COVID-19). South Africa, despite strict and early lockdown has the highest infection rate in Africa. A key component of South Africa's response to SARSCoV2 was the rapid scale-up of diagnostic testing. The Abbott SARS-CoV2 assay detects IgG antibodies against the Nucleocapsid (N) protein of the SARS-CoV2 virus. This study undertook to validate and evaluate performance criteria of the Abbott assay and to establish whether this assay would show clinical utility in our population. Positive patients (n = 391) and negative controls (n = 139) were included. The Architect-i and Alinity-i systems were analyzers that were used to perform the SARS-CoV-2 IgG assay. In-house ELISA was incorporated into the study as a confirmatory serology test. A total of number of 530 participants was tested, 87% were symptomatic with infection and 13% were asymptomatic. When compared to RT-qPCR, the sensitivity of Architect and Alinity SARS-CoV2 assays was 69.5% and 64.8%, respectively. Specificity for Architect and Alinity assays was 95% and 90.3%, respectively. The Abbott assay was also compared to in house ELISA assay, with sensitivity for the Architect and Alinity assays of 94.7% and 92.5%, respectively. Specificity for Abbott Alinity assays was 91.7% higher than Abbott Architect 88.1%. Based on the current findings testing of IgG after 14 days is recommended in South Africa and supports other studies performed around the world.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Imunoglobulina G/sangue , SARS-CoV-2/isolamento & purificação , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/imunologia , COVID-19/sangue , COVID-19/epidemiologia , COVID-19/virologia , Ensaio de Imunoadsorção Enzimática , Feminino , Seguimentos , Humanos , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , África do Sul/epidemiologia , Adulto Jovem
16.
Nature ; 602(7898): 654-656, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35016196

RESUMO

The emergence of the SARS-CoV-2 variant of concern Omicron (Pango lineage B.1.1.529), first identified in Botswana and South Africa, may compromise vaccine effectiveness and lead to re-infections1. Here we investigated Omicron escape from neutralization by antibodies from South African individuals vaccinated with Pfizer BNT162b2. We used blood samples taken soon after vaccination from individuals who were vaccinated and previously infected with SARS-CoV-2 or vaccinated with no evidence of previous infection. We isolated and sequence-confirmed live Omicron virus from an infected person and observed that Omicron requires the angiotensin-converting enzyme 2 (ACE2) receptor to infect cells. We compared plasma neutralization of Omicron relative to an ancestral SARS-CoV-2 strain and found that neutralization of ancestral virus was much higher in infected and vaccinated individuals compared with the vaccinated-only participants. However, both groups showed a 22-fold reduction in vaccine-elicited neutralization by the Omicron variant. Participants who were vaccinated and had previously been infected exhibited residual neutralization of Omicron similar to the level of neutralization of the ancestral virus observed in the vaccination-only group. These data support the notion that reasonable protection against Omicron may be maintained using vaccination approaches.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacina BNT162/imunologia , Evasão da Resposta Imune/imunologia , Testes de Neutralização , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Mutação , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
17.
Br J Cancer ; 126(2): 238-246, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728792

RESUMO

BACKGROUND: Lung cancer is the leading cause of cancer-related death worldwide. Surgical resection remains the definitive curative treatment for early-stage disease offering an overall 5-year survival rate of 62%. Despite careful case selection, a significant proportion of early-stage cancers relapse aggressively within the first year post-operatively. Identification of these patients is key to accurate prognostication and understanding the biology that drives early relapse might open up potential novel adjuvant therapies. METHODS: We performed an unsupervised interrogation of >1600 serum-based autoantibody biomarkers using an iterative machine-learning algorithm. RESULTS: We identified a 13 biomarker signature that was highly predictive for survivorship in post-operative early-stage lung cancer; this outperforms currently used autoantibody biomarkers in solid cancers. Our results demonstrate significantly poor survivorship in high expressers of this biomarker signature with an overall 5-year survival rate of 7.6%. CONCLUSIONS: We anticipate that the data will lead to the development of an off-the-shelf prognostic panel and further that the oncogenic relevance of the proteins recognised in the panel may be a starting point for a new adjuvant therapy.


Assuntos
Autoanticorpos/sangue , Biomarcadores Tumorais/sangue , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Análise Serial de Proteínas/métodos , Idoso , Autoanticorpos/imunologia , Biomarcadores Tumorais/imunologia , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/imunologia , Biologia Computacional/métodos , Feminino , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/imunologia , Masculino , Prognóstico , Curva ROC
18.
Int J Cancer ; 150(2): 347-361, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34591985

RESUMO

Previous studies have identified increased expression of members of the nuclear transport protein family in cancer cells. Recently, certain nuclear transport proteins have been reported to be secreted by cells and found in the serum. The aims of our study were to investigate the levels of multiple nuclear transport proteins secreted from cancer cells, and to determine their potential as diagnostic markers for cervical and oesophageal cancer. Mass spectrometry identified 10 nuclear transport proteins in the secretome and exosomes of cultured cancer cells, and Western blot analysis confirmed increased secreted levels in cancer cells compared to normal. To investigate their presence in patient serum, enzyme-linked immunosorbent assays were performed and revealed significantly increased levels of KPNß1, CRM1, CAS, IPO5 and TNPO1 in cervical and oesophageal cancer patient serum compared to non-cancer controls. Significantly elevated KPNα2 and RAN levels were also identified in oesophageal cancer serum samples. Logistics regression analyses revealed IPO5 and TNPO1 to be the best performing individual candidate biomarkers in discriminating between cancer cases and controls. The combination of KPNß1, CRM1, KPNα2, CAS, RAN, IPO5 and TNPO1 as a panel of biomarkers had the highest diagnostic capacity with an area under the curve of 0.944 and 0.963, for cervical cancer and oesophageal cancer, and sensitivity of 92.5% at 86.8% specificity and 95.3% sensitivity at 87.5% specificity, respectively. These results suggest that nuclear transport proteins have potential as diagnostic biomarkers for cervical and oesophageal cancers, with a combination of protein family members being the best predictor.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Neoplasias Esofágicas/diagnóstico , Proteínas Nucleares/metabolismo , Secretoma/metabolismo , Neoplasias do Colo do Útero/diagnóstico , Transporte Ativo do Núcleo Celular , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Carcinoma de Células Escamosas do Esôfago/metabolismo , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/metabolismo , Adulto Jovem
19.
Clin Infect Dis ; 75(1): e857-e864, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34893824

RESUMO

BACKGROUND: People living with HIV (PLWH) have been reported to have a higher risk of more severe COVID-19 disease and death. We assessed the ability of the Ad26.CoV2.S vaccine to elicit neutralizing activity against the Delta variant in PLWH relative to HIV-negative individuals. We also examined effects of HIV status and suppression on Delta neutralization response in SARS-CoV-2-infected unvaccinated participants. METHODS: We enrolled participants who were vaccinated through the SISONKE South African clinical trial of the Ad26.CoV2.S vaccine in healthcare workers (HCWs). PLWH in this group had well-controlled HIV infection. We also enrolled unvaccinated participants previously infected with SARS-CoV-2. Neutralization capacity was assessed by a live virus neutralization assay of the Delta variant. RESULTS: Most Ad26.CoV2.S vaccinated HCWs were previously infected with SARS-CoV-2. In this group, Delta variant neutralization was 9-fold higher compared with the infected-only group and 26-fold higher relative to the vaccinated-only group. No decrease in Delta variant neutralization was observed in PLWH relative to HIV-negative participants. In contrast, SARS-CoV-2-infected, unvaccinated PLWH showed 7-fold lower neutralization and a higher frequency of nonresponders, with the highest frequency of nonresponders in people with HIV viremia. Vaccinated-only participants showed low neutralization capacity. CONCLUSIONS: The neutralization response of the Delta variant following Ad26.CoV2.S vaccination in PLWH with well-controlled HIV was not inferior to HIV-negative participants, irrespective of past SARS-CoV-2 infection. In SARS-CoV-2-infected and nonvaccinated participants, HIV infection reduced the neutralization response to SARS-CoV-2, with the strongest reduction in HIV viremic individuals.


Assuntos
Ad26COVS1 , COVID-19 , Infecções por HIV , Ad26COVS1/administração & dosagem , Ad26COVS1/efeitos adversos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , HIV , Infecções por HIV/complicações , Humanos , SARS-CoV-2 , Vacinação
20.
Heart Fail Rev ; 27(1): 357-368, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32653980

RESUMO

Rheumatic heart disease (RHD) is a major cause of cardiovascular morbidity and mortality in low- and middle-income countries, where living conditions promote spread of group A ß-haemolytic streptococcus. Autoimmune reactions due to molecular mimicry of bacterial epitopes by host proteins cause acute rheumatic fever (ARF) and subsequent disease progression to RHD. Despite knowledge of the factors that predispose to ARF and RHD, determinants of the progression to valvular damage and the molecular events involved remain incompletely characterised. This review focuses on altered protein expression in heart valves, myocardial tissue and plasma of patients with RHD and pathogenic consequences on RHD. Proteins mainly involved in structural organization of the valve matrix, blood homeostasis and immune response were altered due to RHD pathogenesis. Study of secreted forms of these proteins may aid the development of non-invasive biomarkers for early diagnosis and monitoring outcomes in RHD. Valve replacement surgery, the single evidence-based strategy to improve outcomes in severe RHD, is costly, largely unavailable in low- and middle-income countries (LMIC) and requires specialised facilities. When diagnosed early, penicillin prophylaxis may be used to delay progression to severe valvular damage. Echocardiography and cardiovascular magnetic resonance and the standard imaging tools recommended to confirm early diagnosis remain largely unavailable and inaccessible in most LMIC and both require expensive equipment and highly skilled persons for manipulation as well as interpretation of results. Changes in protein expression in heart valves and myocardium are associated with progressive valvular deformation in RHD. Understanding these protein changes should shed more light on the mechanisms of pathogenicity, while secreted forms of these proteins may provide leads towards a biomarker for non-invasive early detection of RHD.


Assuntos
Febre Reumática , Cardiopatia Reumática , Progressão da Doença , Ecocardiografia , Valvas Cardíacas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...